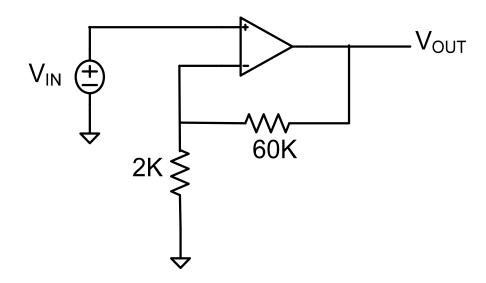
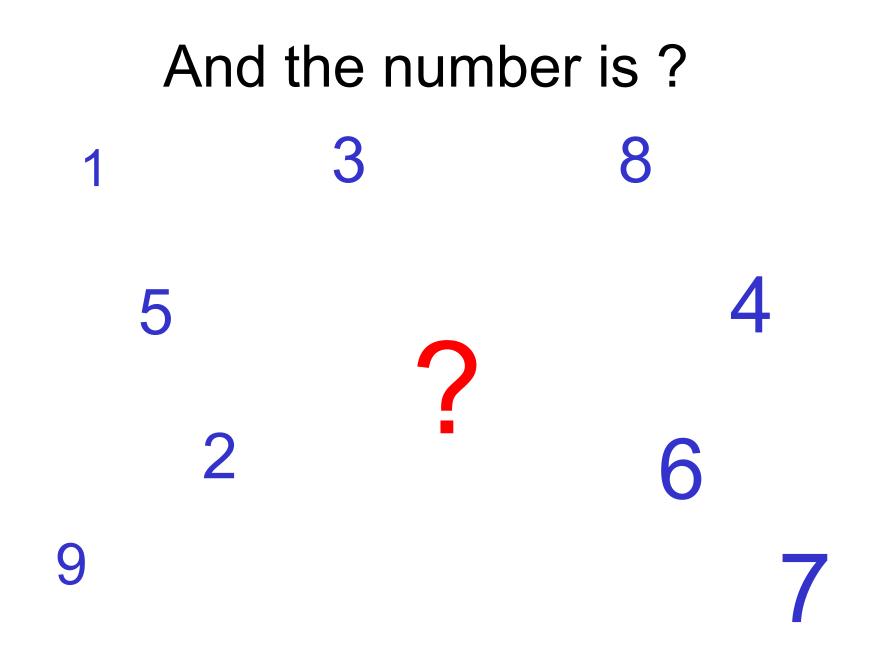
EE 230 Lecture 11

Basic Feedback Configurations Input/Output Impedance Inverting Amplifiers Summing Amplifiers

Quiz 9

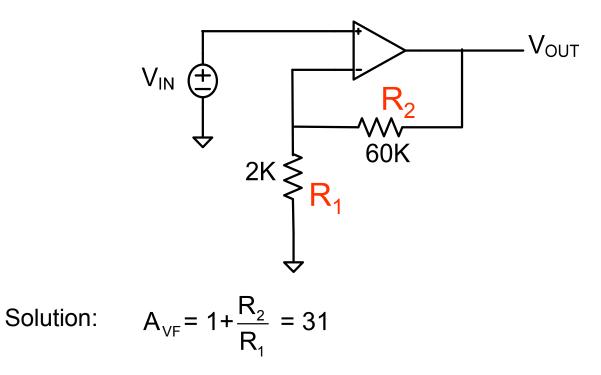
Determine the voltage gain of this amplifier. Assume the Op Amp is ideal





Quiz 9

Determine the voltage gain of this amplifier. Assume the Op Amp is ideal



Reminder: Exam 1 on Wednesday

Students may bring one sheet (front and back) of notes

There will be no 11:00 lectures next week but will resume the week of Feb 14

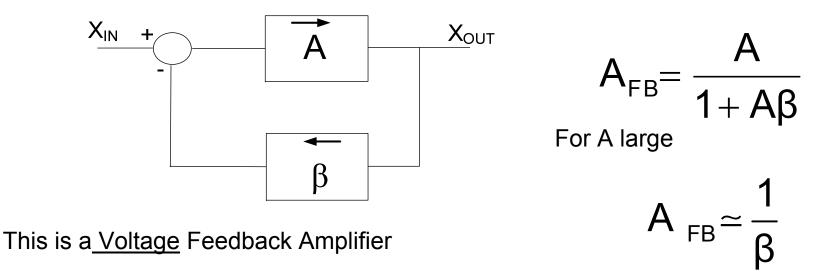
I will have limited email access after noon today so return email messages may be delayed

Laboratory 4 - Purpose

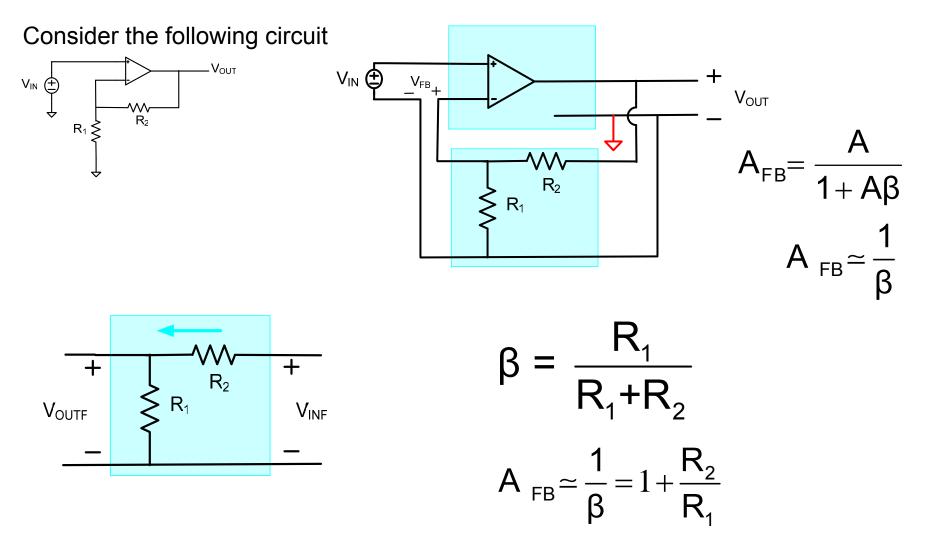
Finite Gain Feedback Amplifiers



For $R_{IN} = \infty$ and $R_0 = 0$, this is an EXACT representation of Black feedback structure

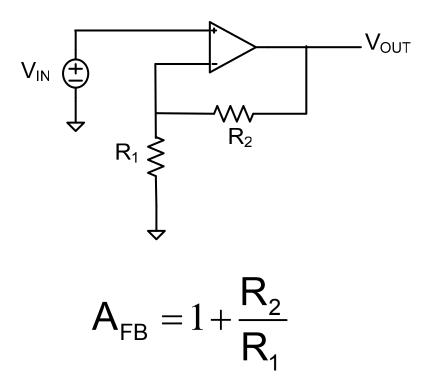


Finite Gain Feedback Amplifiers



Observe this serves as a basic finite-gain noninverting amplifier

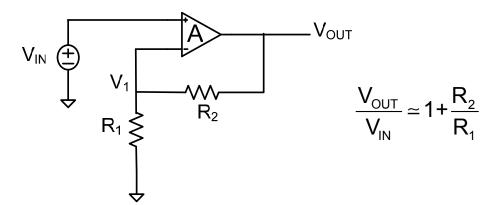
Basic Noninverting Amplifier



Gain can be accurately determined by resistors

Circuit has excellent linearity

Basic Noninverting Amplifier

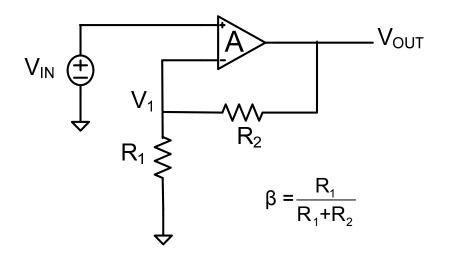


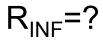
Will you impress your boss if you were to use the more accurate gain expression

$$V_{OUT} = \frac{1 + \frac{R_2}{R_1}}{1 + (\frac{1}{A})(1 + \frac{R_2}{R_1})}$$

instead of the approximation

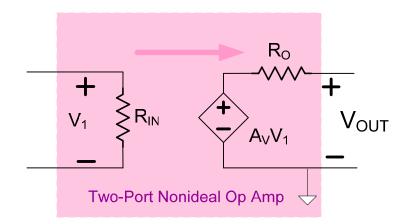
$$\frac{V_{OUT}}{V_{IN}} = 1 + \frac{R_2}{R_1}$$

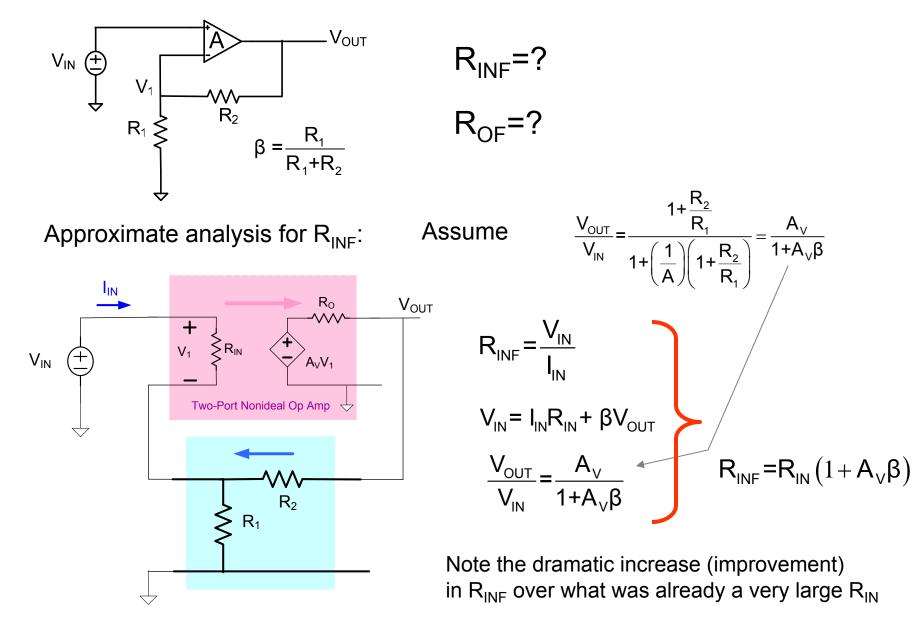


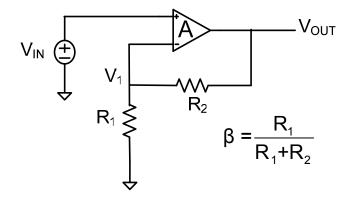


R_{OF}=?

Model of A amplifier including R_{IN} and R_0

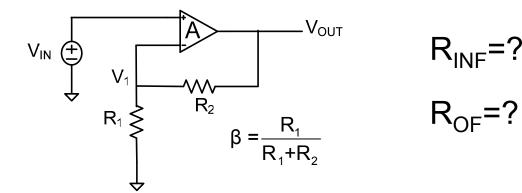






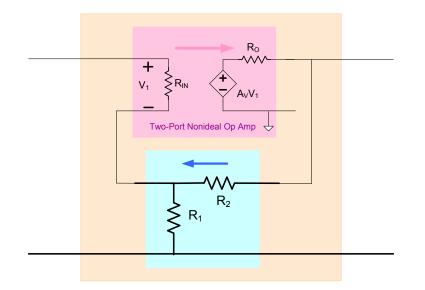
Approximate analysis for R_{OF}: Assume $V_1 \simeq -\beta V_{\text{TEST}}$ ITEST $\mathsf{R}_{\mathsf{OF}} = \frac{\mathsf{V}_{\mathsf{TEST}}}{\mathsf{I}_{\mathsf{TEST}}}$ Ro $\leq R_{IN}$ V_{TEST} $V_1 = -\beta V_{\text{TEST}}$ Two-Port Nonideal Op Amp $\frac{V_{\text{TEST}} - A_V V_1}{R_0} + \frac{V_{\text{TEST}} - R_2}{R_2}$ \checkmark $\mathsf{R}_{0\mathsf{F}} = \frac{\mathsf{I}}{\frac{1}{\mathsf{R}_{0}} + \frac{1}{\mathsf{R}_{0}} + \beta \left(\frac{\mathsf{A}_{\mathsf{V}}}{\mathsf{R}_{\mathsf{V}}} - \frac{1}{\mathsf{R}_{\mathsf{V}}}\right)} \simeq \frac{\mathsf{R}_{0}}{1 + \beta \mathsf{A}_{\mathsf{V}}}$ R_2 R₁ Note the dramatic decrease (improvement)

in R_0 over what was already a very low R_0



Exact analysis :

Consider amplifier as a two-port and use open/short analysis method



Will find $R_{\text{INF}},\,R_{\text{OF}},\,A_{\text{V}}$ almost identical to previous calculations

Will see a small A_{VR} present but it plays almost no role since R_{INF} is so large (effectively unilateral)



Two Port Model for Noninverting FB Amplifier

$$A_{VF} \simeq \frac{1}{\beta} \qquad R_{0F} \simeq \frac{R_0}{1 + \beta A_V} \qquad R_{INF} = R_{IN} \left(1 + A_V \beta \right) \qquad A_{VRF} \simeq \beta$$

Basic Linear Applications

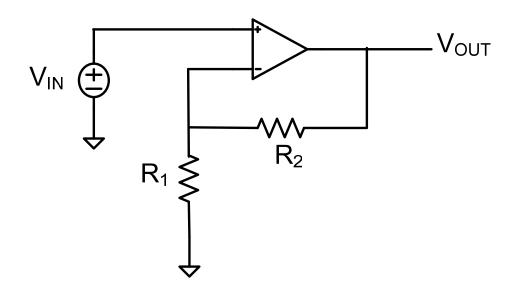
Will now focus on introducing several useful linear circuits and will assume op amps are ideal

- Finite gain (feedback) amplifiers
- Summing amplifiers
- Integrators
- Filters
- And some others

Note: Essentially all linear applications of operational amplifiers involve large amounts of feedback though the concepts of feedback is often not emphasized

Basic Noninverting Amplifier

(already introduced)

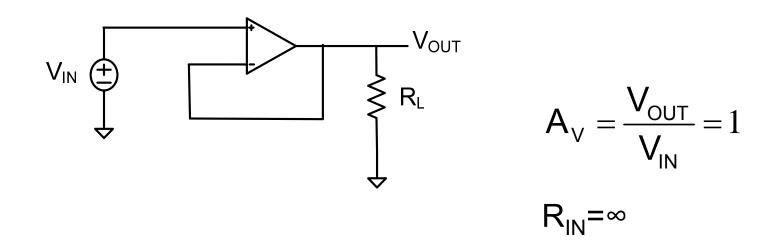


 $A_{V} = \frac{V_{OUT}}{V_{W}} = 1 + \frac{R_{2}}{R_{4}}$

R_{IN}=∞

 $R_{OUT} = 0$

Buffer Amplifier



One of the most widely used Op Amp circuits

 $R_{OUT} = 0$

Provides a signal to a load that is not affected by a source impedance

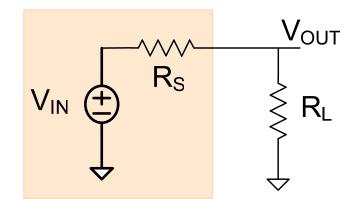
This provides for decoupling between stages in many circuits

Special case of basic noninverting amplifier with $R_1 = \infty$ and $R_2 = 0$

$$\frac{V_{\text{OUT}}}{V_{\text{IN}}} \!=\! 1 \!+\! \frac{R_2}{R_1}$$

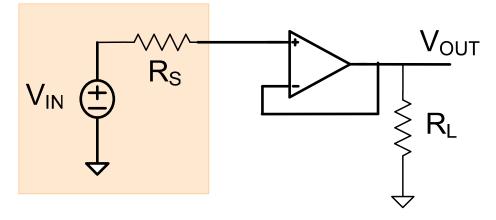
Buffer Amplifier Application

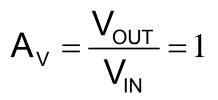
Goal: Drive R_L with V_{IN}



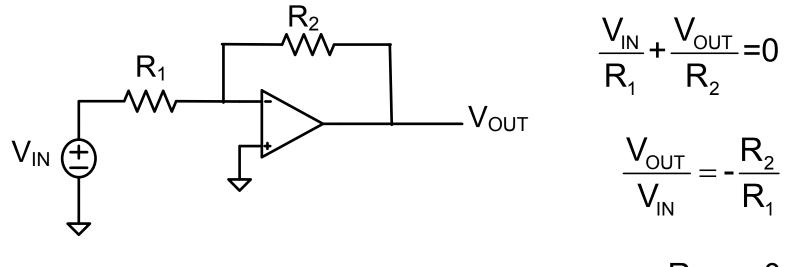
$$A_{V} = \frac{V_{OUT}}{V_{IN}} = \frac{R_{L}}{R_{S} + R_{L}} \neq 1$$

With buffer amplifier





Basic Inverting Amplifier



 $R_{OUT} = 0$

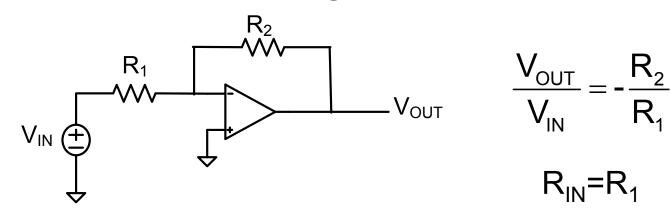
 $R_{IN}=R_1$

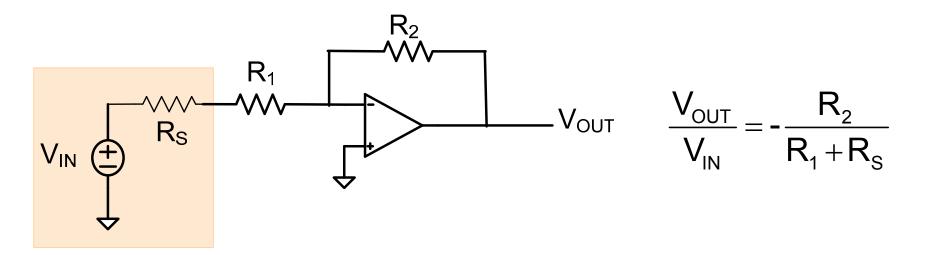
Input impedance of R₁ is unacceptable in many (but not all) applications

This is not a <u>voltage</u> feedback amplifier (it is a feedback amplifier) of x_{IN} the type (note R_{IN} is not high!)

Feedback concepts could be used to analyze this circuit but lots of detail required

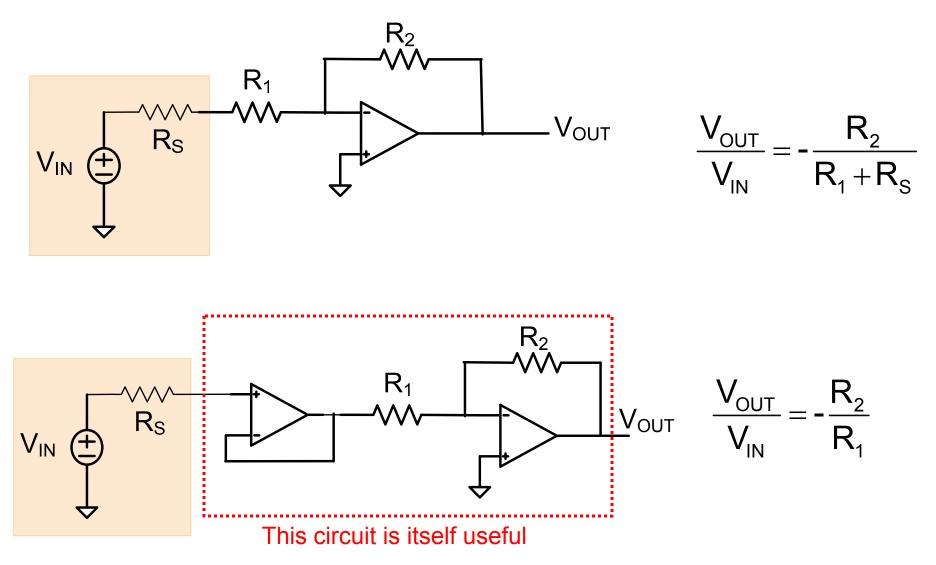
Limitations of Input Impedance of Basic Inverting Amplifier



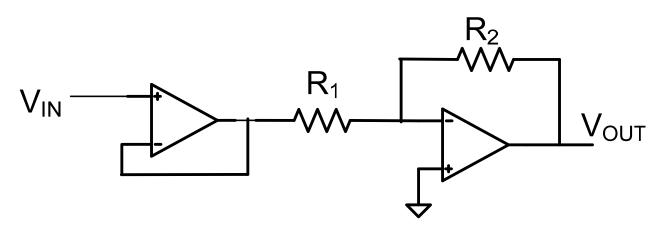


Gain dependent on R_s and this is undesirable in many applicatons

Limitations of Input Impedance of Basic Inverting Amplifier



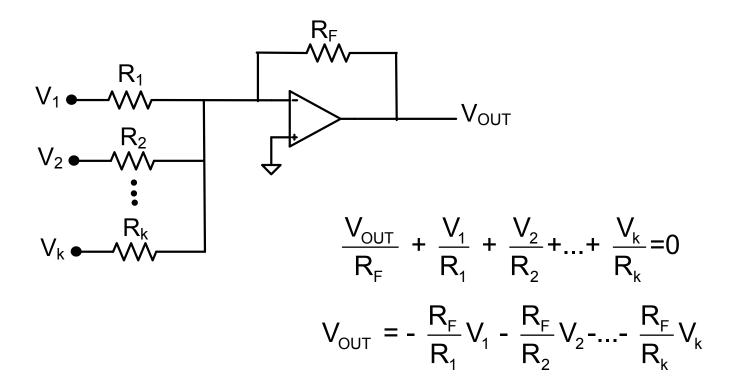
Buffered Inverting Amplifier



$$\frac{V_{OUT}}{V_{IN}} = -\frac{R_2}{R_1}$$

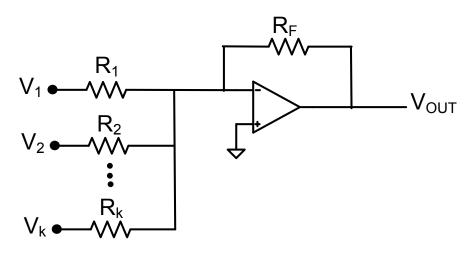
 $R_{OUT} = 0$

Summing Amplifier



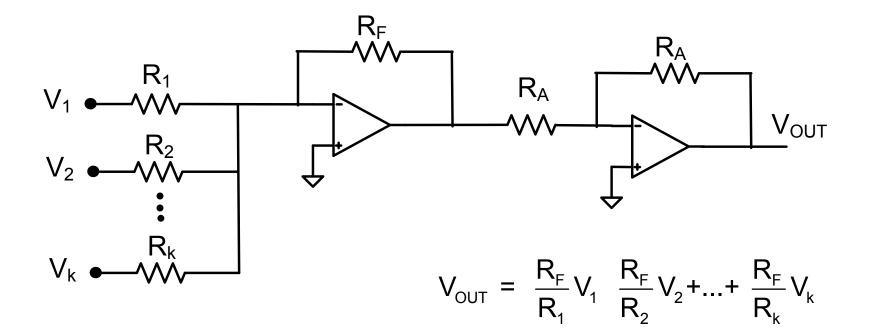
- Output is a weighted sum of the input voltages
- Any number of inputs can be used
- Gains from all inputs can be adjusted together with R_F
- Gain for input V_i can be adjusted independently with R_i for $1 \le I \le k$
- All weights are negative
- Input impedance on each input is R_i

Summing Amplifier



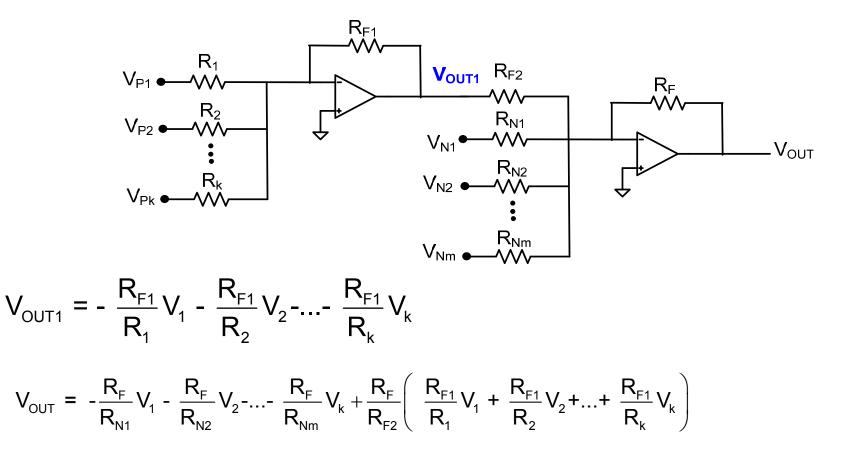
Behringer Commercial Mixer

Noninverting summing amplifier



Weights are now all positive

Summing Amplifier with Inverting and Noninverting Weights



End of Lecture 11